Executive Development Programme in Space Architecture: 3D Printing
-- ViewingNowThe Executive Development Programme in Space Architecture: .
6,862+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ๅ ณไบ่ฟ้จ่ฏพ็จ
100%ๅจ็บฟ
้ๆถ้ๅฐๅญฆไน
ๅฏๅไบซ็่ฏไนฆ
ๆทปๅ ๅฐๆจ็LinkedInไธชไบบ่ตๆ
2ไธชๆๅฎๆ
ๆฏๅจ2-3ๅฐๆถ
้ๆถๅผๅง
ๆ ็ญๅพ ๆ
่ฏพ็จ่ฏฆๆ
โข Introduction to Space Architecture: Understanding the principles and challenges of space architecture; primary considerations for designing habitable space environments in outer space. โข 3D Printing Fundamentals: Overview of additive manufacturing technologies, materials, and applications; benefits and limitations of 3D printing for space architecture. โข Designing for 3D Printing in Microgravity: Special considerations for designing structures for space-based 3D printing; material selection, structure optimization, and quality control. โข Materials Science for Space Architecture: Examination of materials with potential for space-based 3D printing, including polymers, metals, and composites; material properties, processing, and performance evaluation. โข Advanced 3D Printing Technologies for Space Applications: Exploration of cutting-edge 3D printing techniques, such as contour crafting, direct energy deposition, and in-situ resource utilization (ISRU); evaluation of their feasibility for space architecture. โข Robotics and Automation in Space Construction: Overview of robotic systems used in space-based construction, including manipulator arms, rovers, and drones; integration with 3D printing technologies. โข Sustainability in Space Architecture: Discussion of resource conservation, waste management, and energy efficiency in space-based habitats; recycling and reuse of 3D printed components. โข Regulations and Standards for Space Architecture: Examination of international and national laws, regulations, and standards governing space exploration and habitation; implications for 3D printing in space. โข Business Cases and Economic Feasibility of Space Architecture: Analysis of the economic potential of space-based 3D printing; development of business cases and financial models for space architecture projects.
่ไธ้่ทฏ
ๅ ฅๅญฆ่ฆๆฑ
- ๅฏนไธป้ข็ๅบๆฌ็่งฃ
- ่ฑ่ฏญ่ฏญ่จ่ฝๅ
- ่ฎก็ฎๆบๅไบ่็ฝ่ฎฟ้ฎ
- ๅบๆฌ่ฎก็ฎๆบๆ่ฝ
- ๅฎๆ่ฏพ็จ็ๅฅ็ฎ็ฒพ็ฅ
ๆ ้ไบๅ ็ๆญฃๅผ่ตๆ ผใ่ฏพ็จ่ฎพ่ฎกๆณจ้ๅฏ่ฎฟ้ฎๆงใ
่ฏพ็จ็ถๆ
ๆฌ่ฏพ็จไธบ่ไธๅๅฑๆไพๅฎ็จ็็ฅ่ฏๅๆ่ฝใๅฎๆฏ๏ผ
- ๆช็ป่ฎคๅฏๆบๆ่ฎค่ฏ
- ๆช็ปๆๆๆบๆ็็ฎก
- ๅฏนๆญฃๅผ่ตๆ ผ็่กฅๅ
ๆๅๅฎๆ่ฏพ็จๅ๏ผๆจๅฐ่ทๅพ็ปไธ่ฏไนฆใ
ไธบไปไนไบบไปฌ้ๆฉๆไปฌไฝไธบ่ไธๅๅฑ
ๆญฃๅจๅ ่ฝฝ่ฏ่ฎบ...
ๅธธ่ง้ฎ้ข
่ฏพ็จ่ดน็จ
- ๆฏๅจ3-4ๅฐๆถ
- ๆๅ่ฏไนฆไบคไป
- ๅผๆพๆณจๅ - ้ๆถๅผๅง
- ๆฏๅจ2-3ๅฐๆถ
- ๅธธ่ง่ฏไนฆไบคไป
- ๅผๆพๆณจๅ - ้ๆถๅผๅง
- ๅฎๆด่ฏพ็จ่ฎฟ้ฎ
- ๆฐๅญ่ฏไนฆ
- ่ฏพ็จๆๆ
่ทๅ่ฏพ็จไฟกๆฏ
่ทๅพ่ไธ่ฏไนฆ