Advanced Certificate in Modern Evaluation Criteria
-- अभी देख रहे हैंThe Advanced Certificate in Modern Evaluation Criteria is a comprehensive course designed to equip learners with the latest evaluation techniques and methodologies. This certification focuses on the importance of data-driven decision making and performance measurement in today's fast-paced business environment.
2,626+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
इस पाठ्यक्रम के बारे में
100% ऑनलाइन
कहीं से भी सीखें
साझा करने योग्य प्रमाणपत्र
अपने LinkedIn प्रोफाइल में जोड़ें
पूरा करने में 2 महीने
सप्ताह में 2-3 घंटे
कभी भी शुरू करें
कोई प्रतीक्षा अवधि नहीं
पाठ्यक्रम विवरण
• Advanced Evaluation Metrics: Comprehensive study of modern evaluation techniques and metrics, including accuracy, precision, recall, F1-score, ROC-AUC, and log loss.
• Statistical Analysis in Evaluation: Introduction to statistical methods and their application in evaluating machine learning models and algorithms.
• Cross-Validation Techniques: Study of various cross-validation techniques, such as k-fold cross-validation, stratified cross-validation, and leave-one-out cross-validation.
• Bias-Variance Tradeoff: Understanding the concept of bias-variance tradeoff and its impact on model evaluation and selection.
• Evaluation of Deep Learning Models: In-depth analysis of evaluation metrics and techniques specific to deep learning models.
• Evaluation of Natural Language Processing Models: Examination of evaluation metrics and techniques for natural language processing models, including BLEU, ROUGE, and perplexity.
• Evaluation of Time Series Models: Study of evaluation metrics and techniques for time series models, such as MAE, RMSE, and NRMSE.
• Model Selection and Hyperparameter Tuning: Techniques and best practices for selecting the best model and hyperparameter tuning using techniques such as Grid Search, Random Search, and Bayesian Optimization.
• Evaluation of Imbalanced Datasets: Understanding the challenges of evaluating models trained on imbalanced datasets and techniques for addressing them, such as Precision-Recall curves, PR-AUC, and Cohen's Kappa.
करियर पथ
प्रवेश आवश्यकताएं
- विषय की बुनियादी समझ
- अंग्रेजी भाषा में दक्षता
- कंप्यूटर और इंटरनेट पहुंच
- बुनियादी कंप्यूटर कौशल
- पाठ्यक्रम पूरा करने के लिए समर्पण
कोई पूर्व औपचारिक योग्यता आवश्यक नहीं। पाठ्यक्रम पहुंच के लिए डिज़ाइन किया गया है।
पाठ्यक्रम स्थिति
यह पाठ्यक्रम व्यावसायिक विकास के लिए व्यावहारिक ज्ञान और कौशल प्रदान करता है। यह है:
- यह ध्यान दिया जाना चाहिए कि यह पाठ्यक्रम किसी मान्यता प्राप्त पुरस्कार देने वाले निकाय द्वारा मान्यता प्राप्त नहीं है या किसी अधिकृत संस्थान/निकाय द्वारा विनियमित नहीं है।
- किसी अधिकृत संस्था द्वारा विनियमित नहीं
- औपचारिक योग्यताओं के लिए पूरक
पाठ्यक्रम को सफलतापूर्वक पूरा करने पर आपको पूर्णता का प्रमाणपत्र मिलेगा।
लोग अपने करियर के लिए हमें क्यों चुनते हैं
समीक्षाएं लोड हो रही हैं...
अक्सर पूछे जाने वाले प्रश्न
कोर्स शुल्क
- सप्ताह में 3-4 घंटे
- जल्दी प्रमाणपत्र वितरण
- खुला नामांकन - कभी भी शुरू करें
- सप्ताह में 2-3 घंटे
- नियमित प्रमाणपत्र वितरण
- खुला नामांकन - कभी भी शुरू करें
- पूर्ण कोर्स पहुंच
- डिजिटल प्रमाणपत्र
- कोर्स सामग्री
पाठ्यक्रम की जानकारी प्राप्त करें
कंपनी के रूप में भुगतान करें
इस पाठ्यक्रम के लिए भुगतान करने के लिए अपनी कंपनी के लिए चालान का अनुरोध करें।
चालान द्वारा भुगतान करेंकरियर प्रमाणपत्र अर्जित करें